要构造广义线性模型,您必须为数据选择响应变量和解释变量。然后为响应选择合适的连结函数和概率分布。解释变量可以是连续变量、分类变量和交互作用的任意组合。广义线性模型的示例中列出了一些常见的广义线性模型示例。
平台通过参数向量的最大似然估计用广义线性模型来拟合数据。通常对于参数的最大似然估计值没有闭合形式的解。因此,平台使用 Nelder and Wedderburn (1972) 最早提出的一个方法通过迭代拟合过程在数字上估计模型的参数。通过用 Pearson 拟合优度统计量除以其自由度来估计过度离散参数 φ。基于最大似然估计量的渐近正态性计算估计参数的协方差、标准误差和置信限。
g(μ) =
|
|
响应分布的方差函数列出与该响应变量的可用分布关联的方差函数。
V(μ) = 1
|
|