轮廓置信限都以目标误差平方和开始。这是 F 检验认为在给定的 alpha 水平下与解误差平方和存在显著差异的误差平方和(或损失函数之和)。若将损失函数指定为负对数似然,则使用卡方分位数替代 F 分位数。针对每个参数的置信上限,增加参数值直到误差平方和达到目标误差平方和。参数值向上移动时,根据刻画参数的变化,所有其他参数会调整到最小二乘估计值。从概念上看,这是一组复合的嵌套迭代。但内部可以使用 Johnton 和 DeLong 开发的一组迭代来执行此操作。请参见 SAS/STAT 9.1 vol. 3 pp. 1666-1667。
参数的置信限关系图显示了目标误差平方和或负似然的等高线,最小二乘(或最小损失)解位于阴影区域内。
参数的置信限关系图