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A canonical decision problem




Recommender systems in e-commerce




Personalization in e-commerce

* Move towards personalized recommendations
* Use customer attributes and history to drive recommendations
e Search results
* Ads and promotions
e Streaming content

* Etc.

Recommended for you




Product category management
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Assortment selection
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Adaptive assortment selection

* [Select which items to put in stock at a store]

* Combinatorial decision problem

e Select L items from catalog of size N = O(N®) choices
* Even more complex as one considers more stores

 Goal: fresh and localized assortment




Which fast food restaurant has the most
locations in North Carolina? [No googling ;)]
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Which fast food restaurant has the most
locations in USA?




Building out a network of stores
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Facility location

* Decide where and where to build stores/warehouses/hospitals/etc.

* Each decision carries high cost
* Zero appetite for random exploration
e Cannot easily undo a decision

* Requires coordination
* Synergistic and cannibalization effects
* Best location for single next store may not be optimal long-term
e Current learnings inform future decisions




Medical decision making




Personalization in healthcare IS 298 The I-SPY Trials

* Precision medicine
* The right treatment for the right patient at the right time

* Improve patient outcomes and reduce cost by giving treatment if and when
needed

e Public health

* Allocate resources if, when, and where needed
* Adaptive network based sampling
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Reinforcement learning




Reinforcement learning (RL)

* Area of machine learning focused on optimal sequential decision
making under uncertainty

* Massive and rapidly-expanding literature

Publications on RL (Henderson et al. 2017)
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Reinforcement learning (RL) cont’d

* Application areas of RL [up to 2023 as per Bard]

Robotics 43210
Games 31892
Control Theory 28102
Optimization 21321
Computer Vision 18201
Natural Language Processing 15120
Finance 12032
Healthcare 9821
Transportation 7610
Education 5392




Schematic for RL

Goal: select actions to maximize cumulative reward




RL background

* Formalize decision making as a policy

State = Action

* Optimal policy maximizes cumulative utility, e.g., symptom reduction,
disease-free survival, integrated quality of life, etc.

e Goal: learn optimal decision strategy as you go [i.e., online]

* Balance generation of utility and information
* |.e., earning v learning, exploration v exploitation, ethics v efficiency




Ex. Thompson Sampling

* Widely used RL algorithm

* Bayesian approach to uncertainty quantification

e Posit class of models for system under study

e At each time't

e Draw a model from posterior
e Select optimal decision assuming drawn model is correct

* As information accumulates, posterior concentrates = balance
experimentation and optimization

* Other algorithms inject exploration via randomization or ad hoc
exploration bonus




Schematic for RL: recommender system

) ‘ "_’ Customer

Customer
History

. ‘ - ‘_; Ct_Jstomer

— . — —" ®

Keep shopping for

Ink pen refills
1 viewed 1 viewed

|
: m r——

Electronics
1 viewed 3 viewed

View your browsing history

Condenser mlcropho i

Bed pillows & positio...

Deals based on your shopping
trends

l/l f?jli

22% off Bla:k Friday Black Friday

8% 4

30% off Black Friday  [pyee off Black Friday
Deal Deal

23% off

See all deals

Deals related to your views

Black Friday Black Friday

39% off 41% off

Bl“lk riday P Black Friday

See all deals

Continue shopping deals

Black Friday
Deal

kindle scribe
2eirger ity ton
Kot perunte

Black Friday
Deal

See all deals

25% off
Deal

Black Friday

Black Friday
Deal




Schematic for RL: assortment selection
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Schematic for RL: medical decision making
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The danger of abstraction

* Nearly any repeated decision problem can be formulated as RL

* Bring existing literature to bear
e Algorithms
* Theory
* Empirical benchmarks

* Heavily biased by focal applications




Cost and data volume across RL applications
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Cost and data volume across RL applications

Bulk of RL literature
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High-stakes RL

* High cost + low volume

 Exploration carries significant risk = efficiency and safety paramount
* Every action must be justified in terms of short- and long-term benefits
* Decisions typically on coarser time scale = large computation acceptable

* Contrast: majority of RL algorithms focus on computational efficiency to
accommodate high data throughput

e Statisticians have been thinking about these sorts of problems for a
very long time [but with a slightly different objective]

Duke




Information and utility

* Every action generates information and utility

* Greedy selection: estimate utility gain for each action and pick maximizer
* Best decision given current information [i.e., our best guess]
e Can stagnate and fail to learn
* Need not maximize long-term utility

e Sequential experimental design
e Decision that yields greatest improvement in model
* May incur high cost [e.g., poor in-trial outcomes]




Information and utility

* Every action generates information and utility

* Greedy selection: estimate utility gain for each action and pick maximizer
* Best decision given current information [i.e., our best guess]
e Can stagnate and fail to learn
* Need not maximize long-term utility

e Sequential experimental design
e Decision that yields greatest improvement in model
* May incur high cost [e.g., poor in-trial outcomes]

Need to integrate principled experimental design into RL!
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Example: non-dominated

selection




Which decision to select?
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Non-dominated experiments

* An obvious conjecture

One should never run an experiment if an alternative exists that generates
more utility and more information

* Ex., one should never prescribe a treatment that is worse for the patient being
treated and that generates less information for the treatment of future patients

* Ex., one should never recommend an ad to a customer if an alternative exists that
will generate more revenue and more improvement in our forecast models

* Yet, many existing state-of-the-art online learning algorithms routinely
select dominated interventions (actions)

Duke




Non-dominated selection example

* Small batched linear contextual bandit
e Batches of size four
* Mimic ongoing mHealth study at Duke
* Binary treatments
Compare random selection, Thompson Sampling, e-greedy (€ = 0.05), and UCB
1000 decision points

_ Proportion of dominated selections

Algorithm Standard Proposed [non-dom]
Random selection 0.82 0.52
Thompson Sampling 0.68 0.49
€-greedy 0.63 0.59
UCB 0.62 0.50




Operationalizing non-dominated selection

* Posit model My for system under study indexed by 6 € ©

* For every candidate action a compute
0,(a) = Expected Cumulative Utility(a) + A Information Gain (a; 0)

action a is non-dominated if it maximizes 0, (a) for some 4 > 0

* Apply RL algorithm but restrict decisions to non-dominated actions

Duke




Advantages of non-dominated selection

* If RL algorithm consistent and rate optimal, so is non-dominated
counterpart [Norwood et al.]

* In combinatorial problems, expected number of non-dominated

points is log-order the size of the action space, e.g., O(N') becomes
O(LlogN). [L.etal.]

e General framework that accommodates different measures of
information gain (D-, A-, E-optimality, KL-divergence, etc.)




Discussion

Summary and future work




Summary

* RL increasingly used to inform decision making in high-cost low-
volume settings [i.e., high-stakes settings]

* Exploration must be carefully considered
* Incorporate principles from experimental design
* Guardrails on performance
* Limit or eliminate randomization




Future work

* Decision support tools for retail and medical applications

* Metrics for monitoring interim performance of RL

* RL is designed to optimize long-term outcomes €< -2 short-term performance
may suffer, how do we reassure stakeholders?

e Other ideas? Let us know!




Thank you!

Please reach out if you have questions,
suggestions, or want to team up!

eric.laber@duke.edu
laber-labs.com




