For the latest version of JMP Help, visit JMP.com/help.

The singular value decomposition (SVD) enables you to express any linear transformation as a rotation, followed by a scaling, followed by another rotation. The SVD states that any n by p matrix X can be written as follows:
Let r be the rank of X. Denote the r by r identity matrix by Ir.
The matrices U, Diag(Λ), and V have the following properties:
U is an n by r semi-orthogonal matrix with U’U = Ir
V is a p by r semi-orthogonal matrix with V’V = Ir
Diag(Λ) is an r by r diagonal matrix with positive diagonal elements given by the column vector where .
The λi are the nonzero singular values of X.
The squares of the λi are the nonzero eigenvalues of X’X.
The r columns of V are eigenvectors of X’X.
Note: There are various conventions in the literature regarding the dimensions of the matrices U, V, and the matrix containing the singular values. However, the differences have no practical impact on the decomposition up to the rank of X.

Help created on 3/19/2020