For the latest version of JMP Help, visit JMP.com/help.


JSL Syntax Reference > JSL Functions > Trigonometric Functions
Publication date: 04/30/2021

Trigonometric Functions

JMP’s trigonometric functions expect all angle arguments in radians.

ArcCosH(x)

Description

Inverse hyperbolic cosine.

Returns

The inverse hyperbolic cosine of x.

Argument

x

Any number, numeric variable, or numeric expression.

ArcCosine(x)

ArCos(x)

Description

Inverse cosine.

Returns

The inverse cosine of x, an angle in radians.

Argument

x

Any number, numeric variable, or numeric expression.

ArcSine(x)

ArSin(x)

Description

Inverse sine.

Returns

The inverse sine of x, an angle in radians.

Argument

x

Any number, numeric variable, or numeric expression.

ArcSinH(x)

Description

Inverse hyperbolic sine.

Returns

The inverse hyperbolic sine of x.

Argument

x

Any number, numeric variable, or numeric expression.

ArcTangent(x1, <x2=1>)

ArcTan(x1 <x2=1>)

ATan(x1 <x2=1>)

Description

Inverse tangent.

Returns

The inverse trigonometric tangent of x1/x2, where the result is in the range -Pi()/2, Pi()/2.

Argument

x1

Any number, numeric variable, or numeric expression.

x2=1

Specifies atan2.

ArcTanH(x)

Description

Inverse hyperbolic tangent.

Returns

The inverse hyperbolic tangent of x.

Argument

x

Any number, numeric variable, or numeric expression.

CosH(x)

Description

Hyperbolic cosine.

Returns

The hyperbolic cosine of x.

Argument

x

Any number, numeric variable, or numeric expression.

Cosine(x)

Cos(x)

Description

Cosine.

Returns

The cosine of x.

Argument

x

Any number, numeric variable, or numeric expression. The angle in radians.

Sine(expr)

Sin(expr)

Description

Returns the sine.

SinH(expr)

Description

Returns the hyperbolic sine.

Tangent(expr)

Tan(expr)

Description

Returns the tangent of an argument given in radians.

TanH(expr)

Description

Returns the hyperbolic tangent of its argument.

Want more information? Have questions? Get answers in the JMP User Community (community.jmp.com).