该示例分析每周从美国的 16 个气象站收集的气象数据。运行数据表中的“气象站位置”脚本来查看位置图。将每天温度汇总为每周平均值。并非每个气象站都提供一年中每周的周温度测量值。这是稀疏函数数据的一个示例。
1. 选择帮助 > 样本数据库,然后打开 Functional Data/Weekly Weather Data.jmp。
2. 选择分析 > 专业建模 > 函数数据分析器。
3. 选择最高温度并点击 Y,输出。
4. 选择一年的某一周并点击 X,输入。
5. 选择 ID 并点击 ID,函数。
6. 点击确定。
图 16.2 初始“函数数据分析器”报表
初始“函数数据分析器”报表包含原始数据图、汇总统计量和数据的函数均值和函数标准差的汇总图。还提供用于数据处理选项的按钮。数据处理选项也可以从“数据处理”红色小三角菜单访问。在建模前,通常要标准化输出数据。
7. 点击“变换”菜单下的标准化按钮。
根据指定的变换更新数据图和汇总统计量。将“标准化”添加到“步”列表。
8. 点击“函数数据分析器”红色小三角并选择模型 > 傅里叶基函数。
图 16.3 傅里叶基函数模型报表
“傅里叶基函数”报表包含几个报表,这些报表包含有关所选模型的信息。在“模型选择”报表中,显示的模型是根据 BIC 拟合准则最佳的拟合模型。对于气象数据,选择的“傅里叶基函数”模型的期间为 53 并且具有三个基函数对。还提供该模型的拟合统计量和系数。向下滚动以查看“函数 PCA”报表。
图 16.4 “函数 PCA”报表
“函数 PCA”报表表明:前两个特征值解释了数据中近 97% 的变异。在“模型选择”图形中,点击并将红色虚线拖至 3 个 FPC 的位置,可以看到前三个特征值解释了数据中 99% 的变异。不过,第一个特征值自身就解释了 92% 的变异。您可以使用“得分图”检测与其他函数离群的各个函数。在“得分图”中,除了“Miami Beach, FL”和“Greenville, ME”这两个位置之外,大多数位置聚类在一起。向上滚动到单个函数图。“Miami Beach”位置的函数更扁平,这指示它与其他位置相比温度变动更小。“Greenville”位置的函数具有更小的最大值,这指示它普遍比其他位置的温度低。
提示:取消选择“得分图”报表中的“添加变量标签”选项以便更好地标识离群值。