多元方法 > K 均值聚类 > 自组织图
发布日期: 11/15/2021

自组织图

自组织图 (SOM) 方法最初由 Teuvo Kohonen (1989, 1990) 开发,之后被另外一些神经网络爱好者和统计学家进一步推广。最初的 SOM 被视为一个学习过程,就像最初的神经网络算法一样,但在此使用的版本是 K- 均值聚类的变异。在 SOM 文献中该变异称为使用局部加权线性平滑统计量批处理算法

SOM 的目标不仅仅是要在聚类网格上以特定的布点形成聚类,那些在 SOM 网格中彼此邻近的聚类中的点在多元空间中也是彼此邻近的。在经典的 K-均值聚类中,聚类结构是任意的,但在 SOM 中,聚类具有网格结构。该网格结构可帮助在二维中解释聚类:相距较近的聚类比起相距较远的聚类要更类似。请参见SOM 算法的说明

需要更多信息?有问题?从 JMP 用户社区得到解答 (community.jmp.com).