JMP 13.2 Online Documentation (English)
Discovering JMP
Using JMP
Basic Analysis
Essential Graphing
Profilers
Design of Experiments Guide
Fitting Linear Models
Predictive and Specialized Modeling
Multivariate Methods
Quality and Process Methods
Reliability and Survival Methods
Consumer Research
Scripting Guide
JSL Syntax Reference
JMP iPad Help
JMP Interactive HTML
Capabilities Index
JMP 12 Online Documentation
Quality and Process Methods
•
Process Capability
•
Statistical Details for the Process Capability Platform
• Parameterizations for Distributions
Previous
•
Next
Parameterizations for Distributions
This section gives the density functions
f
for the distributions used in the Process Capability platform. It also gives expected values and variances for all but the Johnson distributions.
Normal
,
,
,
σ > 0
E(
X
) =
μ
Var(
X
) =
σ
2
Gamma
,
x
> 0,
α > 0
,
σ > 0
E(
X
) =
ασ
Var(
X
) =
ασ
2
Johnson
Johnson Su
,
,
θ > 0
,
δ > 0
Johnson Sb
,
θ
<
x
<
θ
+
σ, σ > 0
Johnson Sl
, for
x >
θ
if
σ
= 1, x <
θ
if
σ
= -1
where
is the standard normal probability density function.
Lognormal
, x > 0,
,
σ > 0
E(
X
) =
Var(
X
) =
Weibull
,
α > 0
,
β
> 0
E(
X
) =
Var(
X
) =
, where
is the gamma function.
Previous
•
Next
Help created on 9/19/2017