Choice modeling, pioneered by McFadden (1974), is a powerful analytic method used to estimate the probability of individuals making a particular choice from presented alternatives. Choice modeling is also called conjoint choice modeling, discrete choice analysis, and conditional logistic regression.
A choice experiment studies customer preferences for a set of product or process (in the case of a service) attributes. Respondents are presented sets of product attributes, called profiles. Each respondent is shown a small set of profiles, called a choice set, and asked to select the preference that he or she most prefers. Each respondent is usually presented with several choice sets. Use the Choice platform to analyze the results of a choice experiment.
Note: You can design your choice experiment using the Choice Design platform. See Choice Designs in Design of Experiments Guide.
For background on choice modeling, see Louviere et al. (2015), Train (2009), and Rossi et al. (2005).
The Choice platform allows respondents to not make a choice from among a set of profiles. The no choice option is treated as a product with a single attribute (“Select none of these”) that respondents are allowed to select. The parameter estimate for the No Choice attribute can then be interpreted in many ways, depending on the assumptions of the model. The Choice platform also enables you to obtain subject-level information, which can be useful in segmenting preference patterns.
You can obtain bias-corrected maximum likelihood estimators as described by Firth (1993). This method has been shown to produce better estimates and tests than MLEs without bias correction. In addition, bias-corrected MLEs improve separation problems that tend to occur in logistic-type models. Refer to Heinze and Schemper (2002) for a discussion of the separation problem in logistic regression.
If there are not sufficient data to specify “By groups,” you can segment in JMP by clustering subjects using the Save Gradients by Subject option. The option creates a new data table containing the average Hessian-scaled gradient on each parameter for each subject. For an example, see Example of Segmentation. For details about the gradient values, see Gradients.