Aitken, M. (1987). “Modelling Variance Heterogeneity in Normal Regression Using GLIM.” Journal of the Royal Statistical Society, Series C 36:332–339.
Akaike, H. (1974). “A New Look at the Statistical Model Identification.” IEEE Transactions on Automatic Control AC-19:716–723.
Anderson, T. W. (1958). An Introduction to Multivariate Statistical Analysis. New York: John Wiley & Sons.
Belsley, D. A., Kuh, E., and Welsch, R. E. (1980). Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. New York: John Wiley & Sons.
Box, G. E. P., and Cox, D. R. (1964). “An Analysis of Transformations.” Journal of the Royal Statistical Society, Series B 26:211–243.
Candes, E., and Tao, T. (2007). “The Dantzig Selector: Statistical Estimation when p is Much Larger than n.” The Annals of Statistics 35:2313–2351.
Carroll, R. J., and Ruppert, D. (1988). Transformation and Weighting in Regression. London: Chapman & Hall.
Chilès, J.-P., and Delfiner, P. (2012). Geostatistics: Modeling Spatial Uncertainty. 2nd ed. New York: John Wiley & Sons.
Cobb, G. W. (1998). Introduction to Design and Analysis of Experiments. New York: Springer-Verlag.
Cohen, J. (1977). Statistical Power Analysis for the Behavioral Sciences. New York: Academic Press.
Conover, W. J. (1999). Practical Nonparametric Statistics. 3rd ed. New York: John Wiley & Sons.
Cook, R. D., and Weisberg, S. (1982). Residuals and Influence in Regression. New York: Chapman & Hall.
Cornell, J. A. (1990). Experiments with Mixtures. 2nd ed. New York: John Wiley & Sons.
Cox, D. R. (1972). “Regression Models and Life-Tables.” Journal of the Royal Statistical Society, Series B 34:187–220.
Cox, D. R., and Snell, E. J. (1989). The Analysis of Binary Data. 2nd ed. London: Chapman & Hall.
Cressie, N. A. C. (1993). Statistics for Spatial Data. Rev. ed. New York: John Wiley & Sons.
Dwass, M. (1955). “A Note on Simultaneous Confidence Intervals.” Annals of Mathematical Statistics 26:146–147.
Efron, B. (1977). “The Efficiency of Cox’s Likelihood Function for Censored Data.” Journal of the American Statistical Association 72:557–565.
Farebrother, R. W. (1987). “Mechanical Representations of the L1 and L2 Estimation Problems.” In Statistical Data Analysis Based on L1 Norm and Related Methods, edited by Y. Dodge, 455–464. Amsterdam: North-Holland.
Fieller, E. C. (1954). “Some Problems in Interval Estimation.” Journal of the Royal Statistical Society, Series B 16:175–185.
Fleming, T. R., and Harrington, D. P. (1991). Counting Processes and Survival Analysis. New York: John & Sons.
Goodnight, J. H. (1978). Tests of Hypotheses in Fixed Effects Linear Models. Technical Report R–101, SAS Institute Inc., Cary, NC.
Goodnight, J. H., and Harvey, W. R. (1978). Least-Squares Means in the Fixed-Effects General Linear Models. Technical Report R-103, SAS Institute Inc., Cary, NC.
Goos, P., and Jones, B. (2011). Optimal Design of Experiments: A Case Study Approach. Chichester, UK: John Wiley & Sons.
Harrell, F. E. (1986). “The LOGIST Procedure.” In SUGI Supplemental Library Guide, Version 5 Edition. Cary, NC: SAS Institute Inc.
Hastie, T. J., Tibshirani, R. J., and Friedman, J. H. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. New York: Springer-Verlag.
Hocking, R. R. (1985). The Analysis of Linear Models. Monterey, CA: Brooks/Cole.
Huber, P. J., and Ronchetti, E. M. (2009). Robust Statistics. 2nd ed. John Wiley & Sons.
Kalbfleisch, J. D., and Prentice, R. L. (2002). The Statistical Analysis of Failure Time Data. 2nd ed. Hoboken, NJ: John Wiley & Sons.
Mallows, C. L. (1973). “Some Comments on Cp.” Technometrics 15:661–675.
Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979). Multivariate Analysis. London: Academic Press.
McClave, J. T., and Dietrich, F. H. (1988). Statistics. San Francisco: Dellen.
McCullagh, P., and Nelder, J. A. (1989). Generalized Linear Models. 2nd ed. London: Chapman & Hall.
McCulloch, C. E., Searle, S. R., and Neuhaus, J. M. (2008). Generalized, Linear, and Mixed Models. New York: John Wiley & Sons.
Meeker, W. Q., and Escobar, L. A. (1998). Statistical Methods for Reliability Data. New York: John Wiley & Sons.
Miller, A. J. (1990). Subset Selection in Regression. New York: Chapman & Hall.
Muller, K. E., and Barton, C. N. (1989). “Approximate Power for Repeated-Measures ANOVA Lacking Sphericity.” Journal of the American Statistical Association 84:549–555. Also see “Correction to ‘Approximate Power for Repeated-Measures ANOVA Lacking Sphericity’,” Journal of the American Statistical Association 86 (1991): 255–256.
Nelder, J. A., and Wedderburn, R. W. M. (1972). “Generalized Linear Models.” Journal of the Royal Statistical Society, Series A 135:370–384.
Nelson, P. R., Wludyka, P. S., and Copeland, K. A. F. (2005). The Analysis of Means: A Graphical Method for Comparing Means, Rates, and Proportions. Philadelphia: SIAM.
Patterson, H. D., and Thompson, R. (1974). “Maximum Likelihood Estimation of Components of Variance.” In Proceedings of the Eighth International Biometric Conference, 197–207. Washington, DC: International Biometric Society.
Rawlings, J. O. (1988). Applied Regression Analysis: A Research Tool. Pacific Grove, CA: Wadsworth & Brooks/Cole Advanced Books & Software.
SAS Institute Inc. (2017a). “The GENMOD Procedure.” In SAS/STAT 14.3 User’s Guide. Cary, NC: SAS Institute Inc. http://support.sas.com/documentation/onlinedoc/stat/143/genmod.pdf
SAS Institute Inc. (2017b). “The GLM Procedure.” In SAS/STAT 14.3 User’s Guide. Cary, NC: SAS Institute Inc. http://support.sas.com/documentation/onlinedoc/stat/143/glm.pdf
SAS Institute Inc. (2017c). “Introduction to Statistical Modeling with SAS/STAT Software.” In SAS/STAT 14.3 User’s Guide. Cary, NC: SAS Institute Inc. http://support.sas.com/documentation/onlinedoc/stat/143/intromod.pdf
SAS Institute Inc. (2017d). “The MIXED Procedure.” In SAS/STAT 14.3 User’s Guide. Cary, NC: SAS Institute Inc. http://support.sas.com/documentation/onlinedoc/stat/143/mixed.pdf
Scheffé, H. (1958). “Experiments with Mixtures.” Journal of the Royal Statistical Society, Series B 20:344–360.
Searle, S. R., Casella, G., and McCulloch, C. E. (1992). Variance Components. New York: John Wiley & Sons.
Seber, G. A. F. (1984). Multivariate Observations. New York: John Wiley & Sons.
Stone, C., and Koo, C. Y. (1985). “Additive Splines in Statistics.” In Proceedings of the Statistical Computing Section, 45–48. Alexandria, VA: American Statistical Association.
Tibshirani, R. (1996). “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal Statistical Society, Series B 58:267–288.
Tukey, J. W. (1953). “The Problem of Multiple Comparisons.” In Multiple Comparisons, 1948–1983, edited by H. I. Braun, vol. 8 of The Collected Works of John W. Tukey (published 1994), 1–300. London: Chapman & Hall. Unpublished manuscript.
Westfall, P. H., Tobias, R. D., and Wolfinger, R. D. (2011). Multiple Comparisons and Multiple Tests Using SAS. 2nd ed. Cary, NC: SAS Institute Inc.
Wright, S. P., and O’Brien, R. G. (1988). “Power Analysis in an Enhanced GLM Procedure: What it Might Look Like.” In Proceedings of the Thirteenth Annual SAS Users Group International Conference, 1097–1102. Cary, NC: SAS Institute Inc. http://www.sascommunity.org/sugi/SUGI88/Sugi-13-220%20Wright%20OBrien.pdf
Zou, H. (2006). “The Adaptive Lasso and Its Oracle Properties.” Journal of the American Statistical Association 101:1418–1429.

Help created on 7/12/2018