予測モデルおよび発展的なモデル > 時系列分析 > 「時系列分析」プラットフォームの起動
公開日: 04/01/2021

「時系列分析」プラットフォームの起動

「時系列分析」プラットフォームを起動するには、[分析]>[発展的なモデル]>[時系列分析]を選択します。「Seriesg.jmp」データテーブルで「時系列分析」起動ウィンドウを開くと、図17.4のようになります。

図17.4 「時系列分析」起動ウィンドウ 

「列の選択」の赤い三角ボタンのメニューにあるオプションの詳細については、『JMPの使用法』列フィルタメニューを参照してください。

「時系列分析」プラットフォームの起動ウィンドウには、以下のオプションがあります。

Y, 時系列

時系列変数として1つまたは複数の列を指定します。この変数はY軸に表示されます。

入力系列リスト

入力系列変数として1つまたは複数の列を指定します。この変数は「入力系列パネル」に表示され、伝達関数モデルに使用されます。時系列または指示変数の数値でなければなりません。

X, 時間ID

時間軸(X軸)のラベルに使用する変数を指定します。[X, 時間ID]を指定しなかった場合は、行番号が使用されます。

注: [X, 時間ID]変数を使用する場合は、[時間の単位]列プロパティを使って時間の単位を指定できます。選択肢には、[年]・[四半期]・[月]・[週]・[日]・[時]・[分]・[秒]があります。これにより、予測値をプロットする際の間隔が決まります。指定しなかった場合は、時間が等間隔の数値データとして扱われます。

警告: [X, 時間ID]に指定した変数の観測値は、均等な間隔で並んでいると仮定されます。しかし、「時系列分析」プラットフォームは、タイムスタンプの数値が増加しているかどうかしか確認しません。観測値の間隔が等しいかどうかは検証されません。

By

変数の列を指定すると、水準ごとに個別の分析が行われます。複数のBy変数を割り当てた場合、それらのBy変数の水準の組み合わせごとに個別に分析が行われます。

注: By変数を使用する場合は、各水準に観測値がいくつあるかによっては自己相関ラグの数を変更する必要があります。ラグの数は1より大きく、水準あたりの観測値数より小さくなければなりません。

自己相関ラグ

自己相関と偏自己相関の計算に使うラグの数を指定します。これは、自己相関と偏自己相関の計算に使用するタイムラグの最大数です。値は1より大きく、行数より小さくなければなりません。デフォルトでは25に設定されています。

ヒント: 通常は、オブザベーション数をnとしたとき、n/4程度までをラグの最高数とします。

予測する期数

データにあてはめたモデルに基づいて将来予測する時点の個数を指定します。デフォルトでは25に設定されています。

注: 時系列の順序と間隔を維持するために、「時系列分析」プラットフォームはデータテーブルで除外されている行を欠測値として扱います。

より詳細な情報が必要な場合や、質問があるときは、JMPユーザーコミュニティで答えを見つけましょう (community.jmp.com).