Agresti, A. (2013). Categorical Data Analysis. 3rd ed. Hoboken, NJ: John Wiley & Sons.
Baglama, J., and Reichel, L. (2005). “Augmented implicitly restarted Lanczos bidiagonalization methods.” SIAM Journal on Scientific Computing 27:19–42.
Ballard, D. H. (1981). “Generalizing the Hough Transform to Detect Arbitrary Shapes.” Pattern Recognition 13:111–122.
Bartlett, M. S. (1937). “Properties of sufficiency and statistical tests.” Proceedings of the Royal Society of London, Series A 160:268–282.
Bartlett, M. S. (1954). “A Note on the Multiplying Factors for Various Chi Square Approximations.” Journal of the Royal Statistical Society, Series B 16:296–298.
Benzécri, J. P. (1979). “Sur le calcul des taux d’inertie dans l’analyse d’un questionnaire, addendum et erratum à [BIN. MULT.].” Cahiers de l’Analyse des Données 4:377–378.
Borg, I., and Groenen, P. J. F. (2005). Modern Multidimensional Scaling: Theory and Applications. 2nd ed. New York: Springer.
Boulesteix, A.-L., and Strimmer, K. (2007). “Partial Least Squares: A Versatile Tool for the Analysis of High-Dimensional Genomic Data.” Briefings in Bioinformatics 8:32–44.
Browne, M. (2001).“An Overview of Analytic Rotation in Exploratory Factor Analysis.” Multivariate Behavioral Research 36:111 -150.
Collins, L., and Lanza, S. (2010). Latent Class and Latent Transition Analysis. Hoboken NJ: John Wiley & Sons.
Cox, I., and Gaudard, M. (2013). Discovering Partial Least Squares with JMP. Cary, NC: SAS Institute Inc.
Cronbach, L. J. (1951). “Coefficient Alpha and the Internal Structure of Tests.” Psychometrika 16:297–334.
de Ayala, R. J. (2009). The Theory and Practice of Item Response Theory. New York: Guilford Press.
De Jong, S. (1993). “SIMPLS: An Alternative Approach to Partial Least Squares Regression.” Chemometrics and Intelligent Laboratory Systems 18:251–263.
Denham, M. C. (1997). “Prediction Intervals in Partial Least Squares.” Journal of Chemometrics 11:39–52.
Eriksson, L., Johansson, E., Kettaneh-Wold, N., Trygg, J., Wikstrom, C., and Wold, S. (2006). Multi- and Megavariate Data Analysis Basic Principles and Applications (Part I). Chapter 4. Umetrics.
Fisher, L., and Van Ness, J. W. (1971). “Admissible Clustering Procedures.” Biometrika 58:91–104.
Florek, K., Lukaszewicz, J., Perkal, J., and Zubrzycki, S. (1951a). “Sur la liaison et la division des points d’un ensemble fini.” Colloquium Mathematicae 2:282–285.
Florek, K., Lukaszewicz, J., Perkal, J., and Zubrzycki, S. (1951b). “Taksonomia Wroclawska.” Przeglad Antropologiczny 17:193–211.
Frank, I. E., and Todeschini, T. (1994). The Data Analysis Handbook. New York: Elsevier.
Friedman, J. H. (1989). “Regularized Discriminant Analysis.” Journal of the American Statistical Association 84:165–175.
Garthwaite, P. (1994). “An Interpretation of Partial Least Squares.” Journal of the American Statistical Association 89:122–127.
Golub, G. H., and Kahan, W. (1965). “Calculating the singular values and pseudo-inverse of a matrix.” Journal of the Society for Industrial and Applied Mathematics: Series B, Numerical Analysis 2:205–224.
Goodman, L. A. (1974). “Exploratory Latent Structure Analysis Using Both Identifiable and Unidentifiable Models.” Biometrika 61:215–231.
Greenacre, M. J. (1984). Theory and Applications of Correspondence Analysis. London: Academic Press.
Hand, D., Mannila, H., and Smyth, P. (2001). Principles of Data Mining. Cambridge, MA: MIT Press.
Harris, C. W., and Kaiser, H. F. (1964). “Oblique Factor Analytic Solutions by Orthogonal Transformation.” Psychometrika 32:363–379.
Hartigan, J. A. (1981). “Consistency of Single Linkage for High–Density Clusters.” Journal of the American Statistical Association 76:388–394.
Hastie, T., Tibshirani, R., and Friedman, J. H.(2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. New York: Springer Verlag.
Hoskuldsson, A. (1988). “PLS Regression Methods.” Journal of Chemometrics 2:211–228.
Hoeffding, W. (1948). “A Non-Parametric Test of Independence.” Annals of Mathematical Statistics 19:546–557.
Huber, P. J. (1964). “Robust Estimation of a Location Parameter.” Annals of Mathematical Statistics 35:73–101.
Huber, P. J. (1973). “Robust Regression: Asymptotics, Conjecture, and Monte Carlo.” Annals of Statistics 1:799–821.
Huber, P. J., and Ronchetti, E. M. (2009). Robust Statistics. 2nd ed. Hoboken, NJ: John Wiley & Sons.
Jackson, J. E. (2003). A User’s Guide to Principal Components. Hoboken, NJ: John Wiley & Sons.
Jardine, N., and Sibson, R. (1971). Mathematical Taxonomy. New York: John Wiley & Sons.
Jöreskog, K. G. (1977). “Factor Analysis by Least-Squares and Maximum Likelihood Methods.” In Statistical Methods for Digital Computers, edited by K. Enslein, A. Ralston, and H. Wilf, 125 - 165. New York: John Wiley & Sons.
Kohonen, T. (1989). Self-Organization and Associative Memory. 3rd ed. Vol. 8 of Springer Series in Information. Berlin: Springer-Verlag.
Kohonen, T. (1990). “The Self-Organizing Map.” Proceedings of the IEEE 78:1464–1480.
Lindberg, W., Persson, J.-A., and Wold, S. (1983). “Partial Least-Squares Method for Spectrofluorimetric Analysis of Mixtures of Humic Acid and Ligninsulfonate.” Analytical Chemistry 55:643–648.
Mardia, K., Kent, J., and Bibby, J. (1980). Multivariate Analysis. New York: Academic Press.
Mason, R. L., and Young, J. C. (2002). Multivariate Statistical Process Control with Industrial Applications. Philadelphia: SIAM.
McLachlan, G. J., and Krishnan, T. (1997). The EM Algorithm and Extensions. New York: John Wiley & Sons.
McQuitty, L. L. (1957). “Elementary Linkage Analysis for Isolating Orthogonal and Oblique Types and Typal Relevancies.” Educational and Psychological Measurement 17:207–229.
Milligan, G. W. (1980). “An Examination of the Effect of Six Types of Error Perturbation on Fifteen Clustering Algorithms.” Psychometrika 45:325–342.
Nelson, P. R. C., Taylor, P. A., and MacGregor, J. F. (1996). “Missing Data Methods in PCA and PLS: Score calculations with incomplete observations.” Chemometrics and Intelligent Laboratory Systems 35:45–65.
Nunnally, J. C. (1978). Psychometric theory. 2nd ed. New York: McGraw-Hill.
Penny, K. I. (1996). “Appropriate Critical Values When Testing for a Single Multivariate Outlier by Using the Mahalanobis Distance.” Journal of the Royal Statistical Society, Series C 45:73–81.
Press, W. H, Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1998). Numerical Recipes in C: The Art of Scientific Computing. 2nd ed. Cambridge, England: Cambridge University Press.
Rasch, G. (1980). Probabilistic Models for Some Intelligence and Attainment Tests. Chicago: University of Chicago Press.
SAS Institute Inc. (1983).SAS Technical Report A-108: Cubic Clustering Criterion. Cary, NC: SAS Institute Inc. Retrieved December 16, 2015 from https://support.sas.com/documentation/onlinedoc/v82/techreport_a108.pdf
SAS Institute Inc. (2017a). “The CANDISC Procedure.” SAS/STAT 14.3 User’s Guide. Cary, NC: SAS Institute Inc. http://support.sas.com/documentation/onlinedoc/stat/143/candisc.pdf
SAS Institute Inc. (2017b). “The FACTOR Procedure.” SAS/STAT 14.3 User’s Guide. Cary, NC: SAS Institute Inc. http://support.sas.com/documentation/onlinedoc/stat/143/factor.pdf
SAS Institute Inc. (2017c). “The FASTCLUS Procedure.” SAS/STAT 14.3 User’s Guide. Cary, NC: SAS Institute Inc. http://support.sas.com/documentation/onlinedoc/stat/143/fastclus.pdf
SAS Institute Inc. (2017d). “The PLS Procedure.” SAS/STAT 14.3 User’s Guide. Cary, NC: SAS Institute Inc. http://support.sas.com/documentation/onlinedoc/stat/143/pls.pdf
SAS Institute Inc. (2017e). “The VARCLUS Procedure.” SAS/STAT 14.3 User’s Guide. Cary, NC: SAS Institute Inc. http://support.sas.com/documentation/onlinedoc/stat/143/varclus.pdf
Schafer, J., and Strimmer, K. (2005). “A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics.” Statistical Applications in Genetics and Molecular Biology 4 Article 32.
Sneath, P. H. A. (1957). “The Application of Computers to Taxonomy.” Journal of General Microbiology 17:201–226.
Sokal, R. R., and Michener, C. D. (1958). “A Statistical Method for Evaluating Systematic Relationships.” University of Kansas Science Bulletin 38:1409–1438.
Tobias, R. D. (1995). “An Introduction to Partial Least Squares Regression.” In Proceedings of the Twentieth Annual SAS Users Group International Conference, 1250–1257. Cary, NC: SAS Institute Inc. http://www.sascommunity.org/sugi/SUGI95/Sugi-95-210%20Tobias.pdf
Tracy, N. D., Young, J. C., and Mason, R. R. (1992). “Multivariate Control Charts for Individual Observations.” Journal of Quality Technology 24:88–95.
Umetrics. (1995). Multivariate Analysis (3-day course). Winchester, MA.
Waern, Y. (1972). “Structure in Similarity Matrices: A Graphic Approach.” Scandinavian Journal of Psychology 13:5–16.
White, K. P., Jr., Kundu, B., and Mastrangelo, C. M., (2008). “Classification of Defect Clusters on Semiconductor Wafers Via the Hough Transform.” IEEE Transactions on Semiconductor Manufacturing 21:272–278.
Wold, S. (1994). “PLS for Multivariate Linear Modeling.” In QSAR: Chemometric Methods in Molecular Design. Methods and Principles in Medicinal Chemistry, edited by H. van de Waterbeemd, pp. 195–218. Weinheim, Germany: Verlag-Chemie.
Wold, S., Sjostrom, M., and Eriksson, L. (2001).“PLS-Regression: A Basic Tool of Chemometrics.” Chemometrics and Intelligent Laboratory Systems 58:109–130.