Main Methods
Click on a button corresponding to a predictive modeling main method. All processes require a wide data set. (See Tall and Wide Data Sets.) For a more thorough introduction to predictive modeling and these processes, see Introduction to Predictive Modeling.
Refer to the table below for key features and general guidance on these processes. You are encouraged to explore multiple processes and use the individual process links for a more detailed explanation of each.
Tip: When in doubt, there is no harm in trying several predictive modeling methods on your data. The Predictive Modeling Review enables you to standardize model parameters and specifications. Additional tools are also available in the Model Comparisons submenu for this purpose.
Process |
Uses SAS PROC(s) |
Permits dependent variables of type |
Particularly appropriate for data with these characteristics |
Classification boundary shape for binary dependent variable |
Other classification and process characteristics |
||||||||||||||||||||||||
|
|
|
|
|
|||||||||||||||||||||||||
DISTANCE |
|
|
Variable; depends on the distance metric |
Tip: Diagonal Linear Discriminant Analysis can be performed via the Euclidean Distance Metric. |
|||||||||||||||||||||||||
GLMSELECT |
|
|
Linear |
|
|||||||||||||||||||||||||
PLS |
|
|
Linear or quadratic |
|
|||||||||||||||||||||||||
GENESELECT |
|
|
Step function |
|
|||||||||||||||||||||||||
QUANTREG |
|
|
Linear or quadratic |
|
|||||||||||||||||||||||||
GLIMMIX |
|
|
Any shape |
|
|||||||||||||||||||||||||
MIXED |
|
|
Linear or quadratic |
|
|||||||||||||||||||||||||
STEPDISC DISCRIM |
|
|
Linear, parabolic, or S-shaped |
|
|||||||||||||||||||||||||
DISCRIM |
|
|
Any shape |
|
|||||||||||||||||||||||||
LOGISTIC |
|
|
S-shaped |
Caution: This process can take a long time to run, depending on the number of predictor variables and the speed of your machine. |
|||||||||||||||||||||||||
LIFEREG |
|
|
|
|
|||||||||||||||||||||||||
PHREG |
|
|
Exponential family |
Caution: This process can be computationally intensive for large data sets. |
|||||||||||||||||||||||||
MIXED HPMIXED |
|
|
Linear or quadratic |
|
Predictive Modeling Review
Click to sets up a predictive modeling review that can be used to compare the efficacy of different models, applied to one or more dependent variables, at making predictions under the same conditions and compare the models using cross validation, test sets, or learning curves.
See Predictive Modeling for other subcategories.