[混合モデル]手法の「逐次検定」レポートには、固定効果の逐次検定(タイプI検定)が表示されます。このレポートの平方和は、モデルに1つずつ効果が追加されていったときのモデル平方和の増加量です。追加していく順番は、「モデルのあてはめ」起動ウィンドウの「モデル効果の構成」リストでの表示順に従います。
逐次検定のベースとなる平方和は、「タイプI平方和」とも呼ばれます。タイプI平方和は、モデルに1つずつ順番に効果を追加していって計算されます。ある効果のタイプI平方和を求めることを考えてみましょう。そのためには、まず、その効果の前に指定されたすべての効果を含むモデルの平方和を計算します。次に、そのモデルに該当の効果を追加して、平方和を計算します。タイプI平方和は、これら2つのモデルの平方和の差です。
タイプIの検定は、次のような状況では適切です。
• 分散分析において、釣合い(バランス)が取れており、かつ、効果が適切な順序で指定してある場合(ここで、「適切な順序」とは、「モデル効果の構成」リストにおいて、2因子間交互作用が必ず主効果の後に並んでいるなどの条件が満たされていることを指します)
• 純粋な枝分かれモデル(枝分かれ効果しかないモデル)を適切な順序で指定してある場合
• 多項式回帰モデルを適切な順序で指定してある場合
「逐次(タイプI)検定」レポートには、次のような列があります。
要因
モデル内の固定効果。
パラメータ数
効果に含まれるパラメータの個数。連続尺度の効果のパラメータ数は、1個です。名義尺度や順序尺度の主効果のパラメータ数は、その水準数よりも1つ少ない値です。交互作用のパラメータ数は、各主効果のパラメータ数の積です。
分子自由度
該当の効果に対する検定の分子自由度。
分母自由度
分母自由度は、効果の検定における分母に相当する部分の自由度です。分母自由度は、Kenward‐Rogerの1次近似を使って計算されます。Kackar-Harville修正の統計的詳細を参照してください。
F値
「効果が0である」という帰無仮説を検定するためのF値。
p値(Prob > F)
「効果が0である」という帰無仮説を検定するp値。