该帮助的版本不再更新,请参见https://www.jmp.com/support/help/zh-cn/15.2 获取最新的版本.


You can send an empty Data Filter message to a data table, and the initial Data Filter window appears, showing the Add Filter Columns panel that lists all the variables in the data table.
Mode takes three arguments, all of which are optional: Select(bool), Show(bool), Include(bool). These arguments turn on or off the corresponding options. The default value for Select is true (1). The default value for Show and Include is false (0).
Add Filter() adds rows and builds the WHERE clauses that describe a subset of the data table. The basic syntax appears as follows:
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
df = dt << Data Filter(
Mode( Show( 1 ) ),
Where( :age == {13, 14, 15} ),
Where( :height >= 52 & :height <= 65 )
df << ( Filter Column( :age ) << Invert Selection );
You can also use Add Filter() to select matching strings from columns with the Multiple Response property or Multiple Response modeling type.
dt = Open( "$SAMPLE_DATA/Consumer Preferences.jmp" );
df = dt << Data Filter(
Location( {437, 194} ),
Match None( Where( :Brush Delimited == {"Before Sleep", "Wake"} ) ),
Display( :Brush Delimited, Size( 121, 70 ), Check Box Display )
// defines the display options. "Brush Delimited" appears above
This script selects rows with values in the Brush Delimited column that do not match either of the specified values ("Before Sleep", "Wake"). Other available scripting options include Match Any, Match All, Match Exactly, and Match Only. See “多重响应” in the Using JMP book for details about the Multiple Response property and the Multiple Response modeling type.
Clear takes no arguments and clears the data filter.
To specify which values to exclude, use the != operator. The following example excludes ages 16 and 17 from the filtered values.
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
df = dt << Data Filter(
Match( Columns( :age, :sex ),
Where( :sex = "M" ), Where( :age != {16, 17} )
dt = Open( "$SAMPLE_DATA/Cities.jmp" );
obj = dt << Data Filter(
Mode( Select( 0 ), Show( 0 ), Include( 1 ) ),
dt = Open( "$SAMPLE_DATA/Cities.jmp" );
biv = dt << Bivariate(
Fit Line( {Line Color( {213, 72, 87} )} )
dfObj = biv << Local Data Filter(
Location( {566, 47} ),
Mode( Select( 0 ), Include( 1 ) )
dfObj << Add Filter(
dt = Open( "$SAMPLE_DATA/Cities.jmp" );
dist = Distribution(
Continuous Distribution( Column( :POP ) )
filter = dist << Local Data Filter(Add Filter( columns( :Region ) ));
f = Function( {a}, Print( a ) );
rs = filter << Make Filter Change Handler( f );
Another option is to filter data from specific platforms or display boxes. Create a local data filter inside the Data Filter Context Box() function. This defines the context as the current platform or display box rather than the data table.
图 9.4 Local Data Filter and Graph
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
New Window( "Shared Local Filter",
H List Box(
dt << Data Filter( Local ),
Platform(
Bubble Plot( X( :weight ), Y( :height ), Sizes( :age ) )
Platform(
Bubble Plot( X( :weight ), Y( :age ), Sizes( :height ) )
提示:To experiment with this script, open the Local Data Filter Shared.jsl sample script.
图 9.5 Local Filter with Two Bubble Plots
提示:The following script is part of a larger script that first builds the arrays required for a marker seg. See the Local Data Filter for Custom Graph.jsl sample script for code that builds those arrays.
图 9.6 Data Filter Hierarchy